

Overview of the Battery Materials Research Program

Tien Q Duong Vehicle Technologies Office U.S. Department of Energy Washington, DC 20585

June 23rd, 2021

Project ID # BAT108

Battery Materials Research (BMR)

□ Charter

 Research new, high-capacity materials that are affordable and promote a safe, high-energy cell design.
 Present emphasis on sulfur, solid electrolytes and lithium.

□ Issues

- Li Metal: High reactivity and dendrite growth
- Sulfur: Polysulfide shuttle and poor utilization
- Solid-State Electrolytes: Low ionic conductivity and high interfacial resistance

Approaches

- Engineer a host for lithium and/or an artificial SEI layer to protect lithium surface
- Design novel structures to encapsulate polysulfides
- Investigate new, low-cost and conformal solid-state electrolytes
- Develop advanced modeling and characterization techniques to investigate and mitigate the reactivity at the interphases/interfaces.

- □ Participants: National Labs (7), Industry (3),
 Academia (15)
- ☐ 7 Topic Areas, 51 research projects

Topic Area	Number of Projects
Modeling	12
Diagnostics	8
Polymer and Solid-state Electrolytes	13
Metallic Lithium	6
Sulfur Electrodes	5
Air Electrode/Electrolyte	3
Sodium-ion Batteries	4
Total	51

Cost/benefits of Solid-State Electrolytes over Liquid

	Polymer and Composites	Oxides	Sulfide Based
Representative	PEO, PEO + Garnet	Garnets (LLZO)	$xLi_{2}S-(100-x)P_{2}S_{5}$, $Li_{6}PS_{5}X$ (X = Cl, Br, I), LGPS
Material Phase	Amorphous	Crystalline	Crystalline or Glass
Ionic Conductivity	Poor	Fair	Good
Air Stability	Good	Good	Poor
Stability Against Li Anode	Good	Good	Poor
Stability Against High V Cathode	Fair	Good	Poor
Ease of Manufacturing/	Good/	Fair/	Good/
Processing Technique	Roll-to-roll	Tape casting then sintering	Roll-to-roll
Stack Pressure Required	√	√	√
Companies	Hydro Quebec, Bollore, Seeo	Ion Storage System, Quantumscape	Toyota, Samsung, Solid Power, PolyPlus

Cost/benefits of Solid-State Electrolytes over Liquid (2)

			Cost	
			Impact	_ , , , , ,
Case	Anode	Cathode	(\$/KWh)	Technology Advantage
			\	Non-combustible electrolyte reduces risk of thermal runaway, allowing for tighter cell packaging and improved volumetric energy density.
1	Lithium	Conventional	↓	Improved cell safety resulting in simpler battery thermal management
	Metal	(NMC)	↓	Ability for bipolar cell construction resulting in higher voltage and energy
			↓	Ability to thin anode resulting in higher volumetric energy
			4	Reduced cell formation time
2	Metal	Conventional	↓	Same as Case 1 + No anode resulting in even higher volumetric energy
	Free	(NMC)		
3	Lithium Metal	Next Generation	\	Same as Case 1 + Abundant, low-cost cathode such as sulfur

Polymer Electrolytes

- ☐ Two well-known lithium metal polymer battery technologies were developed with DOE/VTO support.
 - Both operate at elevated temperatures (60°C–80°C)
 - Suitable for applications that require continuous operation (e.g., public transportation)
- Bolloré/Avestor/Hydro Quebec-3M/ANL PEO based technology
 - Blue Cars in Paris, France (car-sharing)
 - 30 kWh, 160-mile range
 - City Buses in Wiesbaden, Germany
 - 441 kWh, 125-mile range even in winter

Bolloré Blue Cars

Solid-state Battery Powered Bus

Polymer Electrolytes (2)

- Bosch/SEEO/LBL PEO Block Copolymer
 - Demonstrated as a viable technology under the DOE/USABC Technology Assessment Program.
 - 11 Ah cells achieved more than 500 DST cycles with < 7% capacity loss at ANL.
 - Thermal ramp and overcharge tests were conducted on a module (165 V,11 Ah) at SNL.
 - Technology successfully demonstrated with a high voltage cathode when SEEO was acquired by Bosch in 2015. (Required addition of a second, more stable polymer)

Block Copolymer Approach Provides Ionic Conductor with Mechanical Stability.

SEEO Lithium Metal Cell and Module

Polymer Electrolytes (3)

Shortcomings

- Requires high-temperature operation
- □ Existing commercial technology uses LiFePO₄ and displays a low specific energy.
- PEO-based polymer is not stable against high-voltage cathodes such as LiNMC.
 - May require a separate, more stable polymer for the composite cathode.

Oxide-based Solid-State Electrolytes (LLZO)

- Very attractive due to its stability against both lithium metal and high-voltage cathodes.
- No practical-size cells are available to date. Only small lab-cells are being built for evaluation.

Freeze Casting Processing Li/LLZO/NMC-622

University of Maryland: Trilayer LLZO Structure, Li/LLZO/Sulfur

Oxide-based Solid-State Electrolytes (LLZO) (2)

Shortcomings

- High-temperature sintering could induce an imperfect buried interface.
- □ No known scalable roll-to-roll manufacturing process exists for thin membranes.
- Difficult to achieve and sustain an intimate interface between the cathode and extremely-rigid electrolyte.

Sulfide-based Electrolytes

Energy Efficiency & Renewable Energy

- ☐ Attractive due to their high ionic conductivities and being easy-to-produce
 - Amorphous glass can be drawn from preforms.
 - Powder can be made through mechanical milling or solvent- based processes.
 - Scalable roll-to-roll manufacturing of membrane is being demonstrated.
 - Lamination to the positive electrode requires hot pressing.
 - Several companies can make 1 Ah 5 Ah prototype cells for evaluation.

Preform of LiPO₃

Draw Tower

Source: Iowa State University

Sulfide-based Electrolytes (2)

Shortcomings

- ☐ Component materials are not stable against lithium and high-voltage cathodes.
- ☐ Creating an intimate contact at electrode interfaces is very challenging.
- Most prototype cells available for benchmarking must operate at a high temperature to extend cycle life.

Solid Power ASSB Pouch Cell (NMC622 cathode 3.0 mAh/cm², 2.8-4.2V, C/5-C/5)

Continuous Roll-to-Roll Cell Production

2-Ah Production-Line Cell

150

Summary

- Developing a thin, low-cost, conformal solid electrolyte that can stop lithium dendrites is very challenging.
- Major show-stoppers for current solid-state electrolytes are at the interfaces
 both electrochemical and mechanical.
- Applying stack pressure helps improve cycle life but most reported pressures are simply not suitable for practical applications.
- Numerous scientific challenges need to be resolved before all-solid-state batteries become a reality.